READING GROUP ON FOLIATIONS 1. INTRODUGTION \& HOTNATIONS

UNIV OF MILAN
AY 2023-24
23.10 .2023
 such thet mimoth feing
(1) T_{x} / \mathcal{y} is tievsion frea
(2) $[7, f] \subseteq 7 \Longleftrightarrow \begin{aligned} & {[-,-]: \exists \otimes f \xrightarrow{\text { skew }} \begin{array}{l}\text { sy nuetric } \\ \text { is the } 0 \text { wupp }\end{array}}\end{aligned}$

Singularties: $\left.x \in x^{\text {sm }} \quad f\right|_{x}=T_{x}$

$$
\left.\begin{array}{rl}
\operatorname{Sing}(f) & =x^{\text {suigg }} \cup\left\{x \in X^{\text {sm }} \left\lvert\, \begin{array}{l}
f \text { anoued } x \in X \\
\text { is not a subbuuder }
\end{array}\right.\right\}
\end{array}\right\}
$$

IHIS [Frbemins] X smooth voriety, $f \subseteq T_{x} \frac{\text { smosth }}{\mathbb{\pi}}$ foliation
Then,
$\forall x \in X, \exists \underset{\underset{X}{*}}{U} \leq X$ analytic neighborhood
\& $\exists f: U \leq \mathbb{C}^{\text {ohi } x} \longrightarrow W \subseteq \mathbb{C}^{ \pm}$sorjective
+K $(7)=$ dimix-r \& smooth
and K Ker $(\phi f)=7)_{4}$
[holowouplic submersion]

Tww $\operatorname{Ker}(d f)$ is a olitribut. $\left.\subset T_{x}\right|_{v}$ of raut ohm $x-r$
Local baves an U of 7 : fibers of f
Leaves of 7 : maxe anealagtic contim.

REMARKS. To get the loar integref. of f we vead to wort in the amabytic cat.
\& so the leaves of a fulvation will be oualytic Cnust, of the time they'll be trauscenaratel, i.e., for from biingolg.)
$f \subseteq T_{x}$ a smoath foliation
$F \leq X$ a leat of f
$Q: F$ tar?
Examples A abeliam surface, f a liveer foliation

$$
f \leq T_{A}=O_{A}^{\oplus_{2}^{2}}\left[\begin{array}{l}
\theta_{x}
\end{array} O_{A}^{\theta_{2}^{2}}\right]
$$

1 duin'l $\longleftrightarrow 7$ is olg. integ adble $\underset{\substack{\text { DEF }}}{ }$ the learel are elgelmaic

Algebraically. $f \leq T_{x}$ is org. int.
INTEGRABLE: if the lowers of f are algetanic
 of f.
 plications

