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We will always work over C.
A foliation on a normal variety X is a coherent subsheaf F ⊂ TX such that

(1) F is saturated, i.e. TX/F is torsion free, and
(2) F is closed under Lie bracket.

The rank of F is its rank as a sheaf. Its co-rank is its co-rank as a subsheaf of
TX . The canonical divisor of F is any Weil divisor KF such that O(KF ) ∼= det(F).

In analogy with the classical case of a normal projective variety X where it is
expected that the birational geometry X is governed by the positivity properties of
the canonical bundle OX(KX), a similar principle holds for foliations. Indeed, for
a pair (X,F) of a normal projective X and a foliation F ⊂ TX , one would like to
construct a birational model X ′ of X where the geometry of the strict transform of
F becomes particularly simple. As in the classical case, the way to construct such
“simpler” birational models of the pair (X,F) should rely on a careful analysis of
the positivity properties of the canonical bundle of the foliation OX(KF ).

In low dimension, the birational classification of foliations has seen many im-
portant advancements in recent year:

• for surfaces, there now is a very exhaustive and effective picture of the
classification of rank 1 foliations, [6, 2, 7, 8];
• in dimension three, several foundational steps have been established to-

wards a full classification both in the case of rank 1, [1, 5], as well as rank
2 foliations on algebraic threefolds, [10, 4, 11].

In dimension greater than 3, the analogue problem is still quite obscure for several
concurring reasons, e.g., the lack of an analogue of resolution of singularities in
this context.

The aim of this report is to focus on the new advancements in the birational
classification of rank 2 foliations on threefolds.

1. The foliated minimal model program

We will be working with a slightly more comprehensive framework than the
one just introduced: namely, we will consider a co-rank 1 foliation F on a normal
algebraic threefold X, and effective divisor ∆ on X with coefficients in R≥0, such
that KF + ∆ is R-Cartier. The latter condition is necessary in order to be able to
discuss intersection numbers for KF + ∆.

Given a triple (X,F ,∆) as above, one would like to construct suitable birational
models where the geometry of the triple is as simple as possible. The guiding light
in this quest should be the positivity of KF + ∆ which is measured in terms of the
positivity of the intersections of KF + ∆ with complete curves contained in X.

In analogy with the classical Minimal Model Program (in short, MMP), we
expect 2 different types of outcomes. Given a triple (X,F ,∆), where X projective,
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and the singularities of the triple are mild – see below for more on singularities –
we would like to algorithmically construct a triple (X ′,F ′,∆′), and a birational
contraction π : X 99K X ′ such that F ′ (resp. ∆′) is the strict transform of F (resp.
∆) under π and:

(1) either KF ′ + ∆′ is nef on X ′, that is, (KF ′ + ∆′) ·C ≥ 0 for any complete
curve C ⊂ X ′; or

(2) X ′ is covered by rational curves that have negative intersection with KF ′ +
∆′.

In contructing X ′ (and thus, π), we would like to preserve the geometric data
encoded in the triple (X,F ,∆): in particular, we do not want to alter the linear
systems |m(KF+∆)|, as those carry many important geometric information about
F . In view of this, it follows that case (1) in the above dichotomy should corre-
spond to the case where KF + ∆ is pseudoeffective, while case (2) corresponds to
the non-pseudoeffective case.

A triple (X ′,F ′,∆′) corresponding to an outcome described in (1) above is
called a minimal model of (X,F ,∆), while it is called a Mori fibre space when it
corresponds to an outcome described in (2).

The classic starting point in the birational classification of higher dimensional
algebraic varieties is the quest for a smooth representative in every birational
equivalence class. For foliations, it is not hard to see that this question already
has a negative answer for rank 1 foliations on surfaces, cf. [2]. For the purpose of
the birational classification, the class of simple singularities is the correct analogue
of a smooth model in the classical case of the birational classification of algebraic
varieties, cf. [4, Definition 2.7] for the precise definition. In dimension 2 and 3, it
is proven that for any foliated pair (X,F), where F has co-rank 1, there always
exists a birational model where the strict transform of F has simple singularities,
see [9, 3].

On the other hand, the class of simple singularities is not stable under any
meaningful class of birational transformation; hence, it is important to identify
a suitable class of singularities that works well for our own purpose. The right
class of foliated singularities to consider is that of foliated divisorial log terminal
(in short, F-dlt) singularities, an analogue in the category of foliated spaces of
that of divisorial log terminal singularities in the MMP, cf. [4, § 3] for the precise
definition and more details. F-dlt singularities can be nicely characterized in terms
of discrepancy of their log canonical divisor; they contain simple singularities and
it can be shown that they are stable under the type of birational transformations
that are used in the foliated version of the MMP, cf. next section. Hence, form
this point of view, they are the most natural class of singularities that we should
consider if we want to work with foliated spaces with simple singularities and
classify those.

2. MMP for rank 2 foliations on threefolds

To simplify the notation for triples (X,F ,∆), we will omit X and just write
(F ,∆). We will assume that our pairs (F ,∆) have F-dlt singularities and explain
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how to proceed algorithmically to produce a triple (X ′,F ′,∆′) which is either a
minimal model or a Mori fibre space for (F ,∆).

The starting input of our algorithmic construction is an F-dlt pair (F ,∆) – for
example, we could start with a foliation F with simple singularities on X.

If KF + ∆ is nef, then our algorithm can stop immediately, as (F ,∆) is its own
minimal model. On the other hand, if KF + ∆ is not nef, the following result
provides a way forward in our quest for minimal models or Mori fibre spaces.

Theorem 1. [10, 4] Let X be a normal projective threefold and let F be a co-rank
one foliation. Suppose that (X,D) is klt for some D ≥ 0. Let (F ,∆) be a F-dlt
pair and let H be an ample Q-divisor.
Then there exist countable many curves C1, C2, . . . such that

NE(X) = NE(X)KF+∆≥0 +
∑

R+[Ci].

Furthermore, for each i, Ci is a rational curve tangent to F such that (KF + ∆) ·
Ci ≥ −6, and if C ⊂ X is a curve such that [C] ∈ R+[Ci] then C is tangent to F .
In particular, there exist only finitely many (KF + ∆ +H)-negative extremal rays.

Given a KF + ∆-negative extremal ray R ⊂ NE(X), we can look at the set
loc(R) of all points x ∈ X such that there exists a curve C with x ∈ C and [C] ∈ R.
We have the following three distinct possibilities:

• if loc(R) = X, then [10, Theorem 8.9] implies that R is KX -negative and
so there exists a contraction f : X → Y with dimX > dimY . Thus, X is
covered by rational curves that have negative intersection with KF + ∆,
and it is a Mori fibre space; in this case we can stop our algorithm at this
stage.
• If loc(R) = D is a divisor, then it is shown in [10, 4] that D can be con-

tracted by means of a birational contraction f : X → Y . Such a morphism
f is called a divisorial contraction; moreover, f preserve the linear systems
|m(KF+∆)| = |m(KFY

+∆Y )|. In this case, we substitute (X,F ,∆) with
(Y,FY ,∆Y := f∗∆), where FY is the strict transform of F , and repeat
our algorithm starting with this new triple.
• If loc(R) = C is a curve, then there exists a birational contraction f : X →
Y whose exceptional locus is Y . Such an f is called a flipping contraction.
In this case, f∗(KF+∆) ceases to be R-Cartier, as f is a small contraction
but KF + ∆ intersects C negatively. Hence, we cannot just substitute X
with Y and (F ,∆) with their strict transforms, as we would not be able
to measure the positivity of KF + ∆ anymore on Y .

In all the of cases above, by Theorem 1, the morphism f contracts curves
tangent to the foliation, thus, f is equivariant with respect to the foliation.

In the last case above, that of a so-called flipping contraction, can be remedied
by means of the so-called flip of f : X → Y . A flip is nothing more than the
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following diagram of birational maps

X

f ��

// X+

f+
}}

Y

where f+ : X+ → Y is also a birational contraction whose exceptional locus has
dimension 1 and KF+ + ∆+ is R-Cartier and it has positive intersection with all
curves contracted by f+, where F+ (resp. ∆+) is the strict transform of F (resp.
∆).

Theorem 2. [4] Let F be a co-rank one foliation on a Q-factorial projective
threefold X. Let (F ,∆) be a F-dlt pair on X.
Let φ : X → Y be a (KF + ∆)-flipping contraction. Then the (KF + ∆)-flip exists.

As KF+ + ∆+ is R-Cartier, we can still discuss its intersection properties.
Moreover, it is possible to prove that when making a flip we have the equality of
linear systems |m(KF +∆)| = |m(KF+ +∆+)| and so we can substitute (X,F ,∆)
with (X+,F+,∆+) and restart our analysis as we did above.

Theorem 2 is a delicate and fundamental result which relies on a careful analysis
of the singularities of F , together with an ingenious argument based on Artin’s
approximation theorem that is used to produce algebraic approximations to the
(possibly formal/trascendental) separatrices1 of F around loc(R).

As for a divisorial contraction f : X → Y , the rank of the Picard group of X is
strictly greater than that of Y , it follows that when running our algorithm, we can
just produce a finite number of divisorial contractions. The same type of result is
not a priori clear for the case of flipping contractions and flips. Using the Special
Termination for foliated pairs proved in [4] and extending the Bott connection to
the case of foliated pairs with terminal singularities, it has been proven in [11] that
there cannot be infinite sequences of flips.

Theorem 3. [11] Let X be a Q-factorial quasi-projective threefold. Let (F ,∆) be
an F-dlt pair. Then starting at (F ,∆) there is no infinite sequence of flips.

Thus, all of the results contained in Theorem 1-3 can be summarized in the fol-
lowing final theorem, which can be summarized by saying that “the Minimal Model
Programme terminates for co-rank 1 F-dlt foliated pairs on projective threefolds”.

Theorem 4 (MMP for rank 2 foliations on threefolds). Let X be a Q-factorial
quasi-projective threefold. Let (F ,∆) be an F-dlt pair. Then there exists a (KF +
∆)-negative birational contraction π : X → X ′ and an F-dlt pair (F ′,∆′) on X ′

such that:

(1) either, KF ′ + ∆′ is nef; or,
(2) there exists a contraction f ′ : X ′ → Y , with dimX ′ > dimY and KF ′ +∆′

is ample along the fibers of f ′.

1A separatrix is an invariant hypersurface for the foliation F that contains a singular point

of the foliation.



5

In [11], a large suite of applications of the existence of the MMP is shown in the
guise of an analysis of local and global properties of foliations on threefolds. The
authors study foliation singularities proving the existence of first integrals for iso-
lated canonical foliation singularities, an extension of Malgrange’s theorem to the
singular case, and derive a complete classification of terminal foliated threefolds
singularities. They show the existence of separatrices for log canonical singulari-
ties. They also prove some hyperbolicity properties of foliations, showing that the
failure of the canonical bundle to be nef implies the existence of entire holomorphic
curves contained in the open strata of a natural stratification of the singular locus
of the foliation.
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