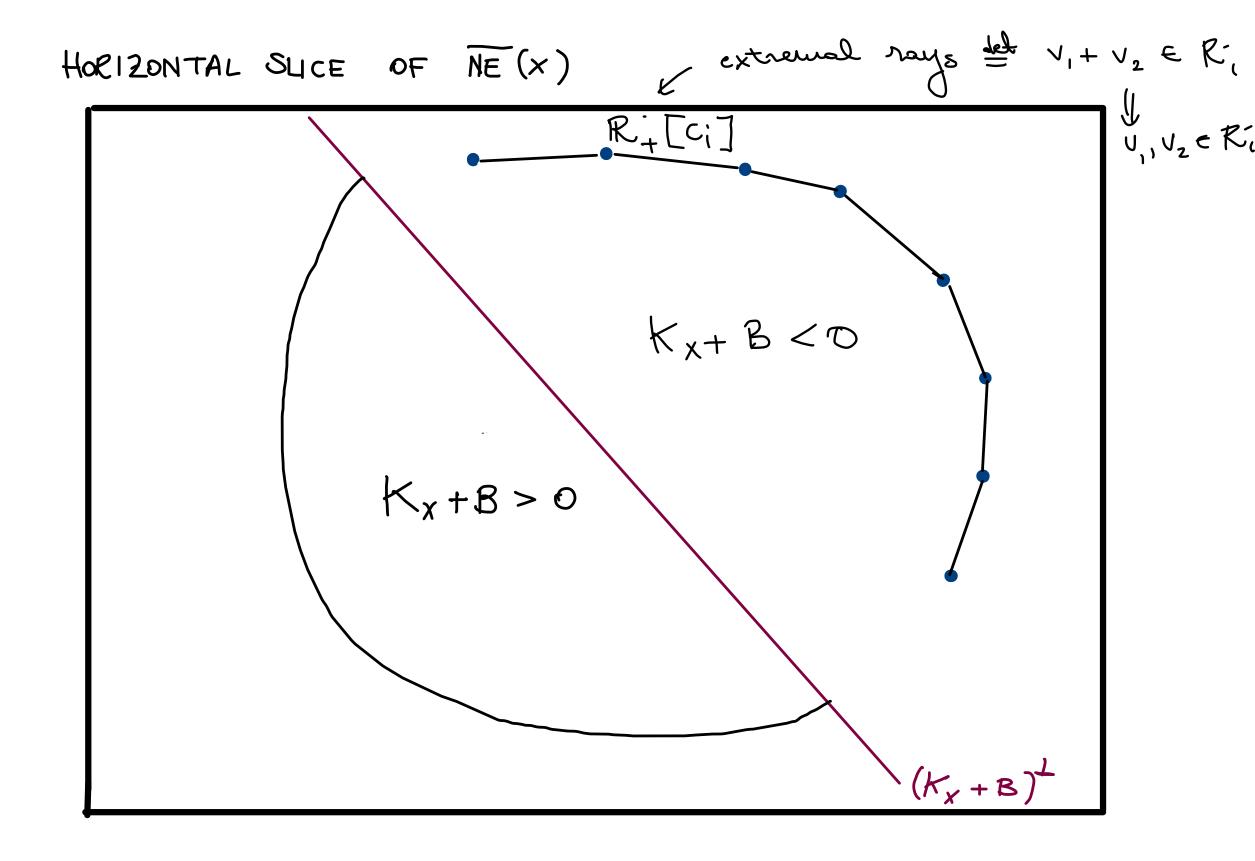
THE CONE THEOREM THEOREM LET (X,B) BE A LOG CANONICAL PAIR.

WE HAVE THE FOLLOWING DECOMPOSITION

$$\overline{NE}(X) = \overline{NE}(X)_{K_{X}+B \ge 0} + \overline{NE}(X)_{K_{X}+B < 0} = \frac{1}{NE}(X)_{K_{X}+B \ge 0} + \frac{1}{NE}(X)_{K_{X}+B < 0} + \frac{1}{NE} \frac$$



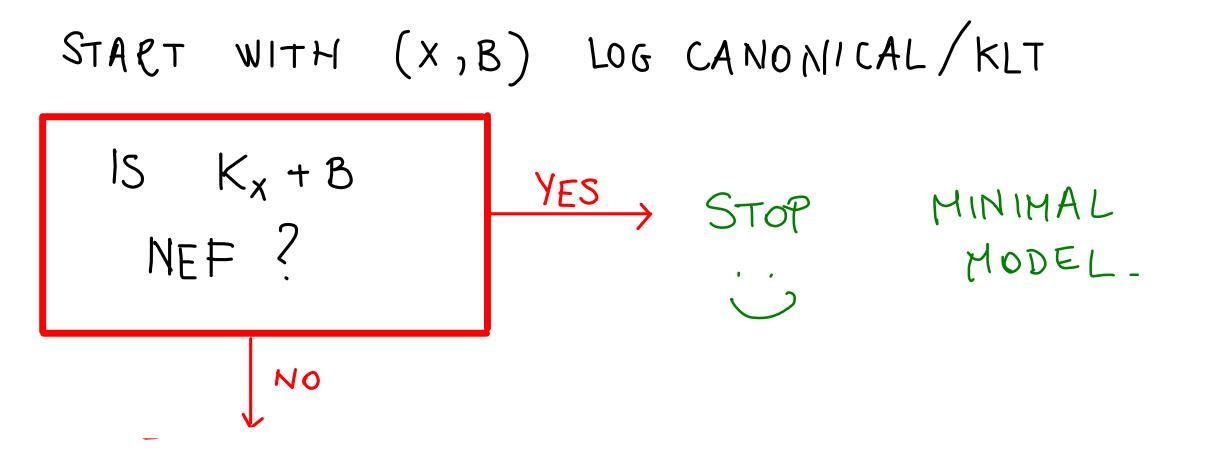
THERE ARE 3 POSSIBLE DUTCOMES OF A CONTRACTION OF AN EXTREMAL RAY:

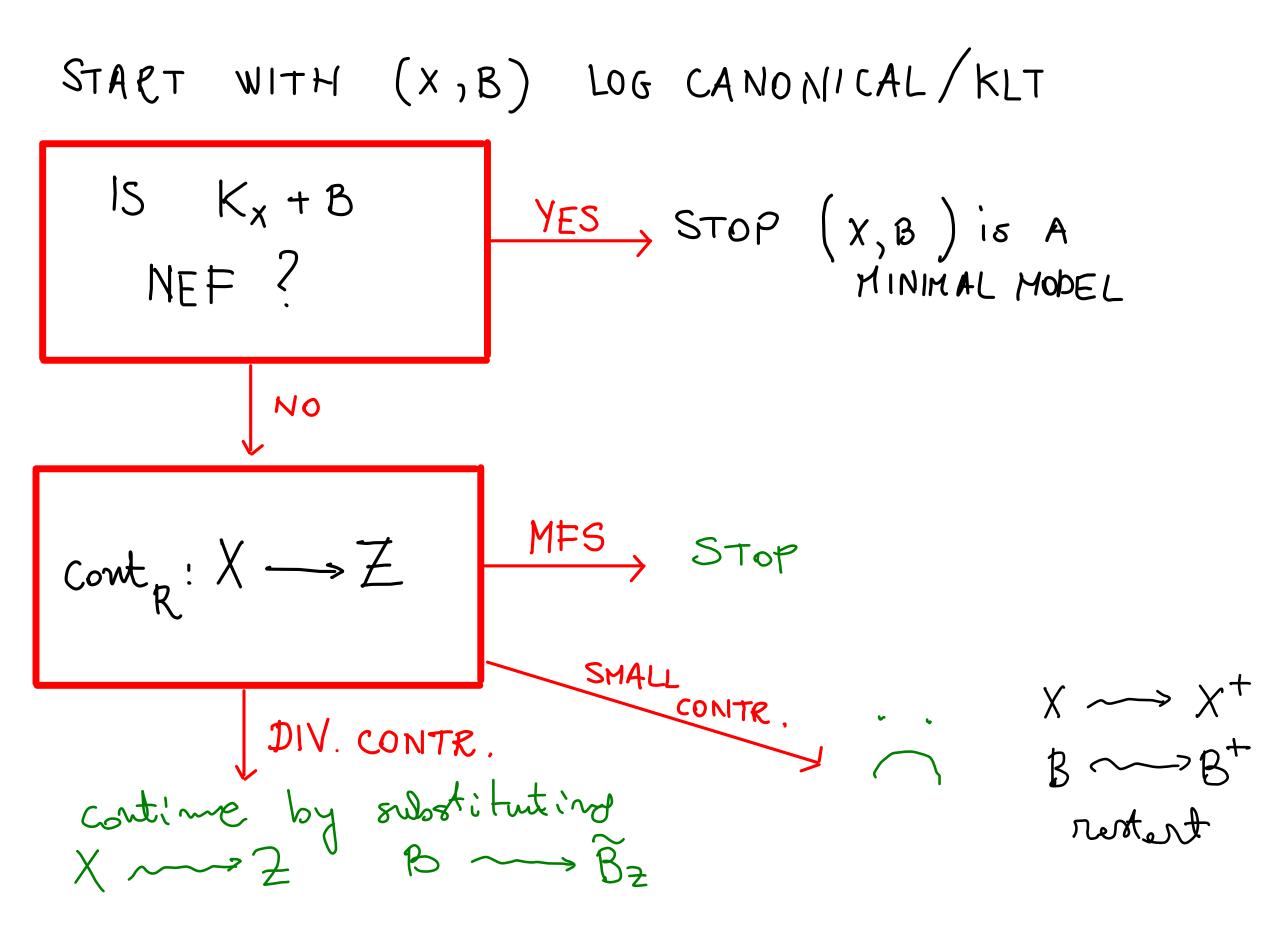
 (1) DIVISORIAL CONTRACTION
 cont_{Ri}: X → Z; is bizetional + Exc(cont_{Ri}) = D ⊆ X <u>Ex</u>: Y <u>Becx</u> X is a prime divisor.
 (2) MORI FIBER SPACE

 $\operatorname{cont}_{R_i}: X \longrightarrow Z_i$ is a fibration $-(K_X + B)|_F$ is ample

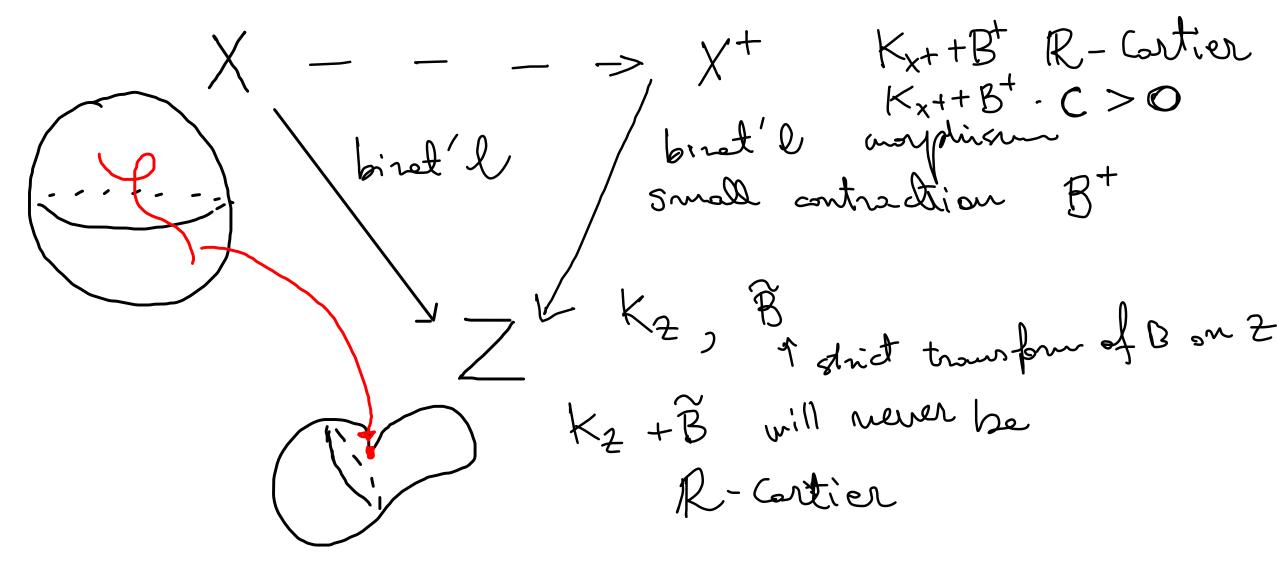
3 SMALL CONTRACTION

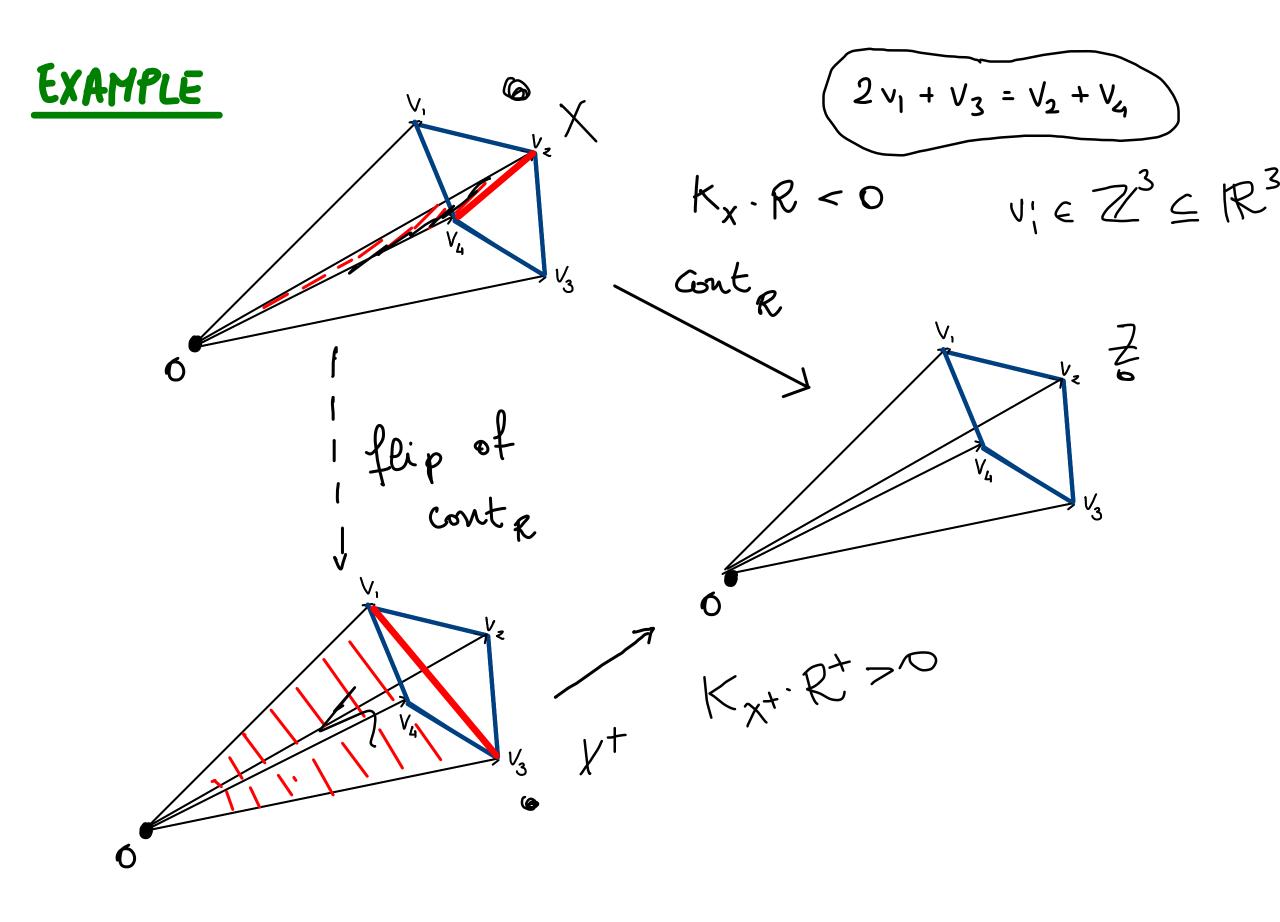
$$\operatorname{cont}_{R_i}: X \longrightarrow Z_i$$
 is birational + $\operatorname{Exc}(\operatorname{cont}_{R_i})$
hus codin ≥ 2
in X





EXISTENCE OF FLIPS Let (X, B) be a LC pain. Assume that $K_X + B$ is not nef & we contract $A(K_X + B) - NEGATIVE EXTREMAL RAY <math>R \subset \overline{NE}(x)$ **EXISTENCE OF FLIPS** Let (X, B) be a LC pair. Assume that $K_X + B$ is not nef & we contract $A(K_X + B) - NEGATIVE EXTREMAL RAY <math>R \subset \overline{NE}(x)$ THROUGH A SMALL CONTRACTION





- Step 0 (Initial datum) Assume that we already constructed a $\mathcal{L}_{pair}^{\mathsf{C}}(X_i, \Delta_i)$ with X_i Q-factorial.
- Step 1 (Preparation) If $K_{X_i} + \Delta_i$ is nef, go to step 3, case (2). If not, we establish the following results.
 - (1) (Cone Theorem) $\overline{NE}(X_i) = \overline{NE}(X_i)_{K_{X_i} + \Delta_i \ge 0} + \sum \mathbb{R}_{\ge 0} C_i.$
 - (2) (Contraction Theorem) Any $K_{X_i} + \Delta_i$ -negative extremal ray can be contracted.
- Step 2 (Birational transformations) If $\operatorname{cont}_{R_i} : X_i \to Y_i$ is birational, then we produce a new pair as follows.
 - (1) (Divisorial contraction) If $\operatorname{cont}_{R_i}$ is a divisorial contraction, then set $X_{i+1} = Y_i$ add $\Delta_{i+1} = (\operatorname{cont}_{R_i})_* \Delta_i$.
 - (2) (Flipping contraction) If cont_{R_i} is a flipping contraction, then set (X_{i+1}, Δ_{i+1}) = (X_i⁺, Δ_i⁺), the flip of cont_{R_i}.
 LC
 In both cases, we produce a *b*-pair (X_{i+1}, Δ_{i+1}) with X_{i+1} Q-factorial. Thus, go back to Step 0.
- Step 3 (Final outcome) We expect that eventually the procedure stops, and we get one of the following two possibilities.
 - (1) (Fano contraction) If $\operatorname{cont}_{R_i}$ is a Fano contraction, then set X^*, Δ^*) = (X_i, Δ_i) .
 - (2) (Minimal model) If $K_{X_i} + \Delta_i$ is nef then set X^*, Δ^* = (X_i, Δ_i) .

TERMINATION Let
$$(X,B)$$
 a log comonical pair. Let
 $X =: X_0 - - \rightarrow X_1 - - \rightarrow X_2 - - \rightarrow \dots - - \rightarrow X_1 - - \rightarrow \dots$
be a sequence of $(K_X + B) - \text{flips}$.
Is this a finite sequence?

TERMINATION Let
$$(X,B)$$
 a log comonical poin. Let
 $X =: X_0 - - \rightarrow X_1 - - \rightarrow X_2 - - \rightarrow \dots - - \rightarrow X_i - - \rightarrow \dots$
be a sequence of $(K_X + B) - \text{flips}$.
Is this a finite sequence?
ABUNDANCE Let (X',B') a log comonical poin.
If $K_{X'} + B'$ is nef, then is it semiample?

EXISTENCE OF GOOD MINIMAL HODELS THEOREM [BIRKAR - CASCINI - HACON - MCKERNAN] LET (X, B) BE A KLT PAIR, WHERE X is Q-FACTORIAL. ASSUME THAT EITHER Kx+B IS BIG OR NON-PSEFF, OR B ITSELF IS BIG. THEN THE MMP (WITH SCALING OF AN AMPLE DIVISOR H) CAN BE RUN & TERMINATES IN FINITE TIME $(\cdot \cdot \cdot \cdot)$

$$(X,B) =: (X_{o},B_{o}) - - \rightarrow (X_{a},B_{a}) - - \rightarrow (X_{n},B_{n})$$

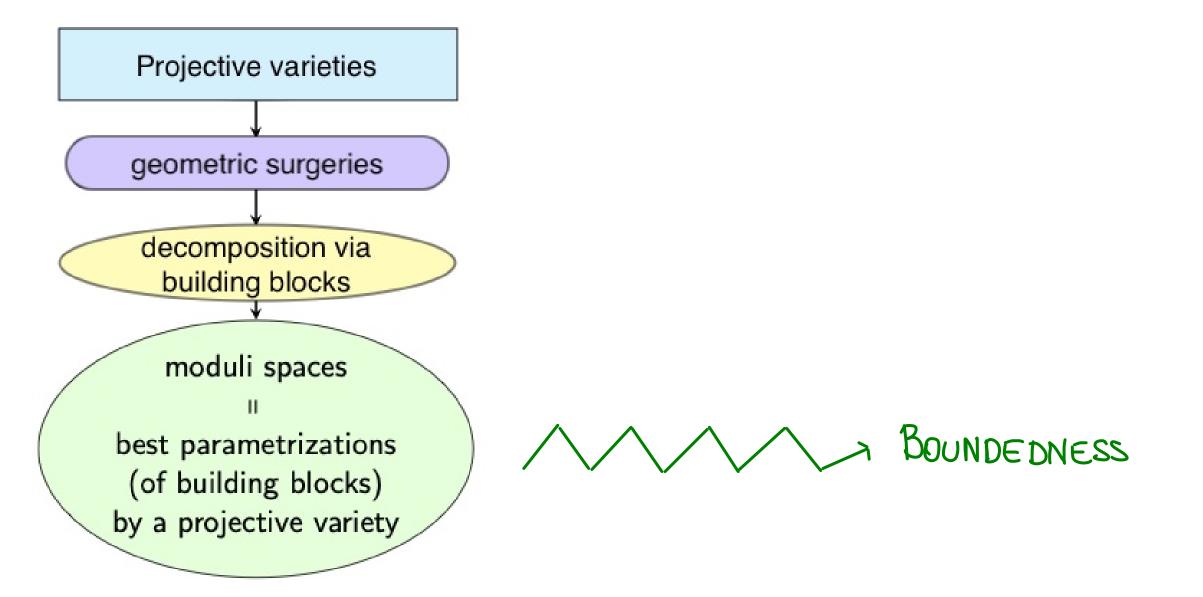
EXISTENCE OF GOOD MINIMAL HODELS THEOREM [BIRKAR - CASCINI - HACON - MCKERNAN] LET (X, B) BE A KLT PAIR, WHERE X is Q-FACTORIAL. ASSUME THAT EITHER Kx+B IS BIG OR NON-PSEFF, OR B ITSFLF IS BIG. THEN THE MMP (WITH SCALING OF AN AMPLE DIVISOR H) CAN BE RUN & TERMINATES IN FINITE TIME $(X,B) =: (X_{o},B_{o}) - - \rightarrow (X_{a},B_{a}) - - \rightarrow (X_{n},B_{n})$ AND TERMINATES WITH 1 OF THE 2 FOLLOWING OUTCOMES: 1) MFS Xn Kx+B is Z

EXISTENCE OF GOOD MINIMAL HODELS THEOREM [BIRKAR - CASCINI - HACON - MCKERNAN] LET (X, B) BE A KLT PAIR, WHERE X is Q-FACTORIAL. ASSUME THAT EITHER Kx+B IS BIG OR NON-PSEFF, OR B ITSELF IS BIG. THEN THE MMP (WITH SCALING OF AN AMPLE DIVISOR H) CAN BE RUN & TERMINATES IN FINITE TIME $(X, B) =: (X_{o}, B_{o}) - - \rightarrow (X_{a}, B_{a}) - - \rightarrow (X_{n}, B_{n})$

HENCE, WE CAN CONSIDER THE FOLLOWING 3 CLASSES OF PAIRS: (i) LOG CANONICAL MODELS (X,B) LC poir, Kx+B ample (2) K-TRIVIAL PAIRS (or LOG CALABI- YAU pairs) (X,B) LC pair, $K_X + B \equiv O$ (3) LOG FANO PAIRS (on FANO PAIRS) (X,B) LC poir, $-(K_X+B)$ ample

	Log canonical models	Weak CY varieties	Fano varieties
Curvature of KE metric	< 0	= 0	> 0
Rational points	Few [Lang conjecture: {rat'l points} $\subseteq \mathbb{Z} \subsetneq \mathbb{X}$]	?	Many [Manin conj: $ \{rat' pts of height < B\} $ $\sim cB(log B)^{b_2-1}$]
Fundamental group	Anything	Virtually abelian	Finite

MINIMAL MODEL PROGRAM : A GENTLE INTRODUCTION

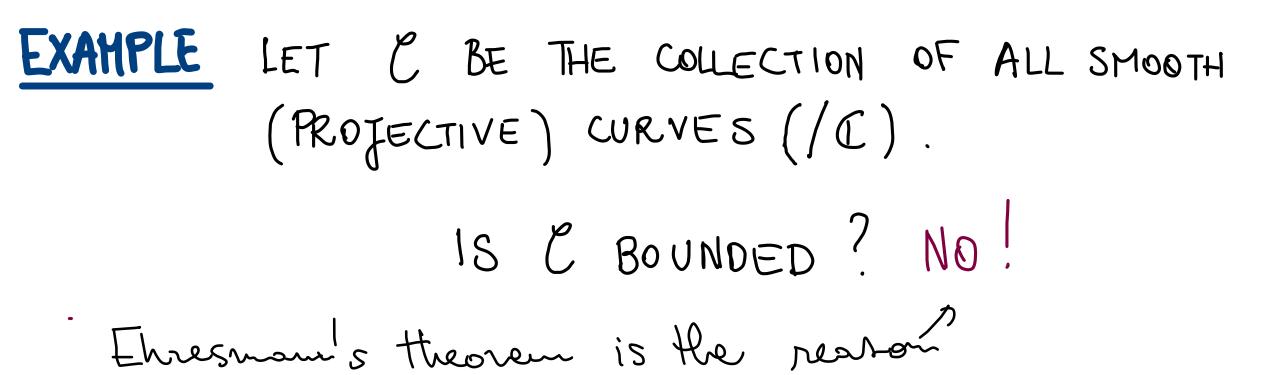


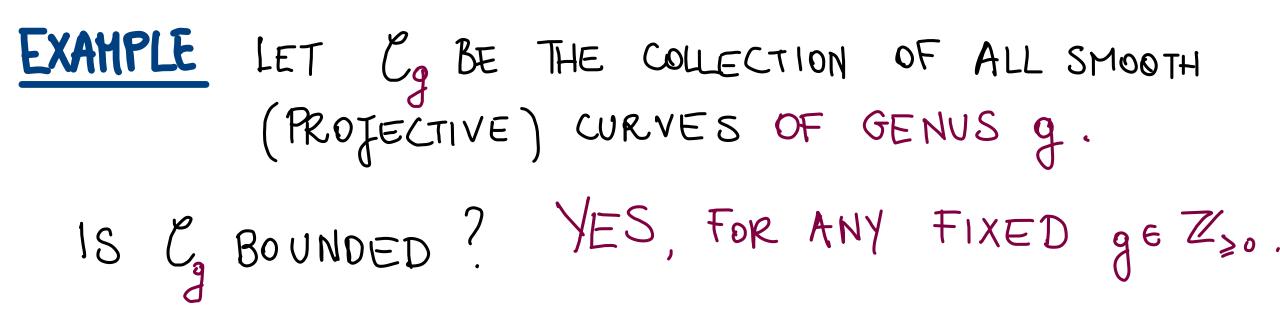
BOUNDEDNESS DEFINITION LET D BE A COLLECTION OF PROJEVARIETIES. WE SAY THAT D IS BOUNDED IF THERE EXISTS

A PROJECTIVE MORPHISM OF SCHEMES OF FINITE TYPE

(PROJECTIVE) CURVES (/C). IS C BOUNDED? **BOUNDEDNESS** DEFINITION LET D BE A COLLECTION OF PROJEVARIETIES. WE SAY THAT D IS BOUNDED IF THERE EXISTS

A PROJECTIVE MORPHISM OF SCHEMES OF FINITE TYPE





EXAMPLE LET
$$\mathcal{L}_{g}$$
 BE THE COLLECTION OF ALL SMOOTH
(PROJECTIVE) CURVES OF GENUS g.
IS \mathcal{L}_{g} BOUNDED? VES, FOR ANY FIXED $g \in \mathbb{Z}_{\geq 0}$.
 $g = 0$ $\mathcal{C}_{o} = \{\mathbb{P}^{1}\} \implies T = \{pt.\}$ SUFFICES
 $g = 1$ $\mathcal{L}_{i} = \{\text{ELLIPIT CURVES}\} \implies T = \mathbb{P}(\mathbb{H}^{o}(\mathbb{O}_{p^{2}}(3)))$ SUFF
 $g \geq 2$ \mathcal{M}_{g} BUT ALSO $\mathcal{C} \stackrel{e}{=} \frac{\mathcal{C}_{g}}{\mathcal{C}_{i} - \mathcal{L}_{i}} p^{5g-4}$
 $\implies T = \mathcal{H}ib(\mathbb{P}^{5g-4}), 3(2g-2)x-g+1$

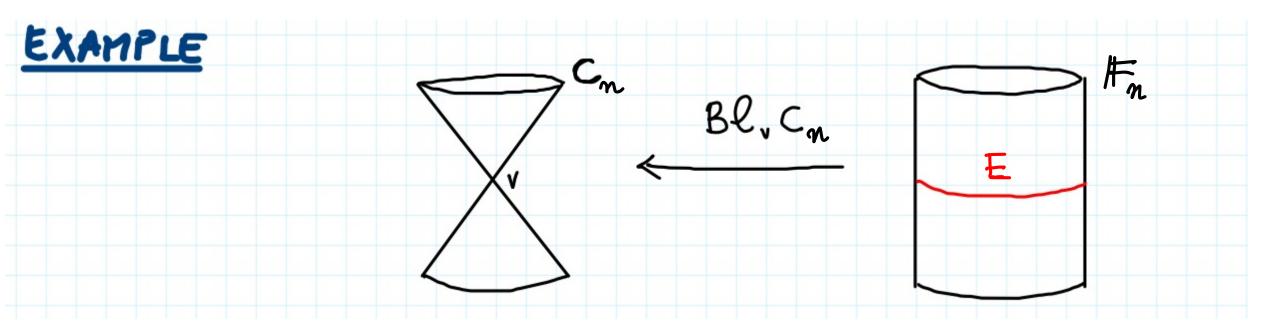
EXAMPLE FIX
$$m, d, S \in \mathbb{Z}_{>0}$$
. LET
 $\bigcirc_{n,d,S} := d X \subseteq |\mathbb{P}^n| X \text{ is a VARIETY W}/dm := d, deg = S \\$
IS $\bigcirc_{n,d,S}$ BOUNDED?
 $d = n - 1, S$ $T = \iint (H^o(\bigcirc_{\mathbb{P}^n}(S))$

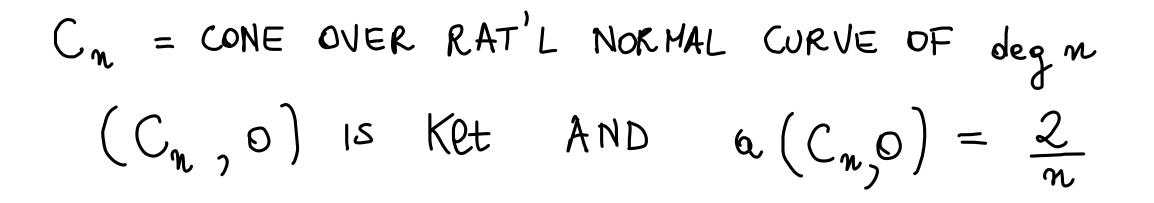
GENERAL CASE CHOW VARIETY

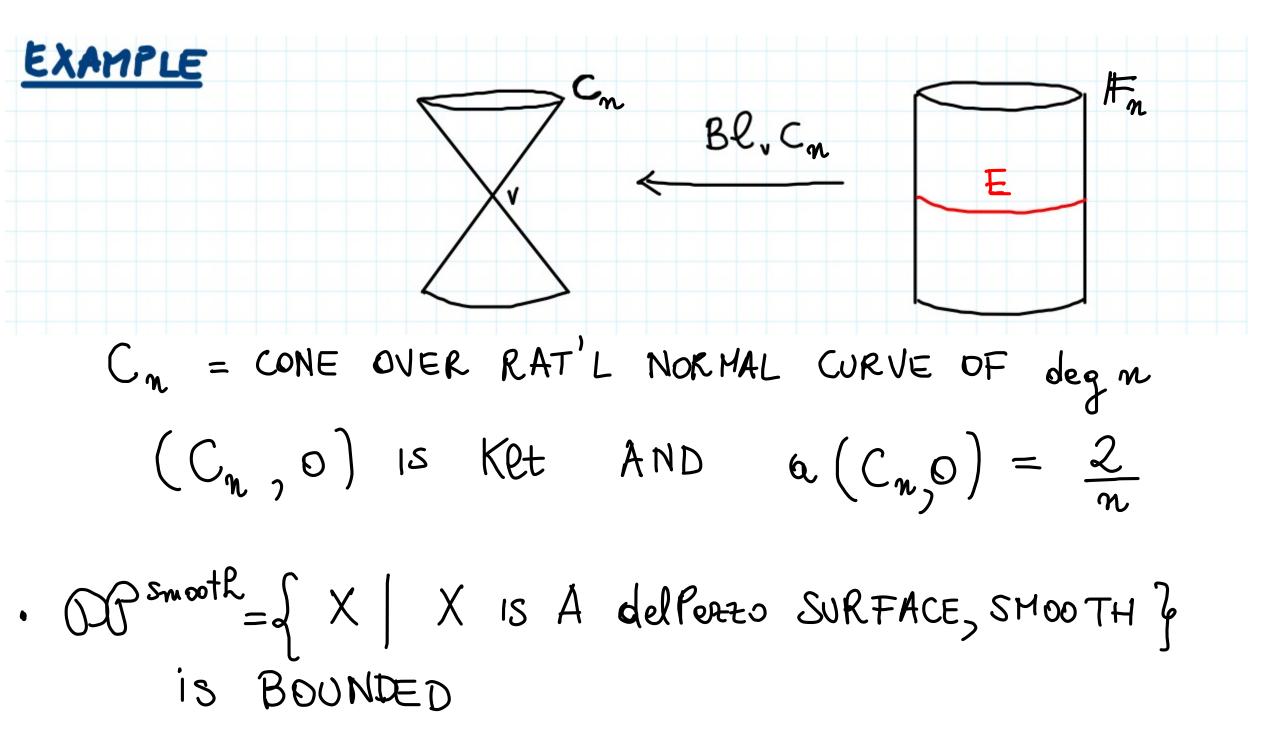
LEMMA Fix
$$d \in \mathbb{Z}_{>0}$$
. LET \bigcirc BE A COLLECTION OF
PROJ-VAR'S OF dwi=d.
 \oslash is BOUNDED \iff $\exists C = C(\bigcirc) \in \mathbb{Z}_{>0}$ s.t.
 $\forall X \in \bigcirc, \exists H_X \quad VERY \quad AMPLE$
CARTIER DIVISOR
ON X
SUCH THAT $H_X^d \leq \bigcirc$.
 $\Rightarrow \quad H \subseteq \mathbb{P}^n \times T \quad H' = \amalg \text{ pullbeck clargestrate}$
 $\downarrow \text{ projective} \quad \downarrow \qquad C + d$
 $T \longrightarrow T' = \amalg \text{ strate of } T \qquad V'$
 $\Leftrightarrow \quad X \in \bigcirc \quad X \quad C^{|H_X|} = \mathbb{P}^n \quad m \leq \deg X + d$
 $X \in \bigcirc \quad X \quad Chowr(\mathbb{P}^n)_{dwi=d, deg=8}$

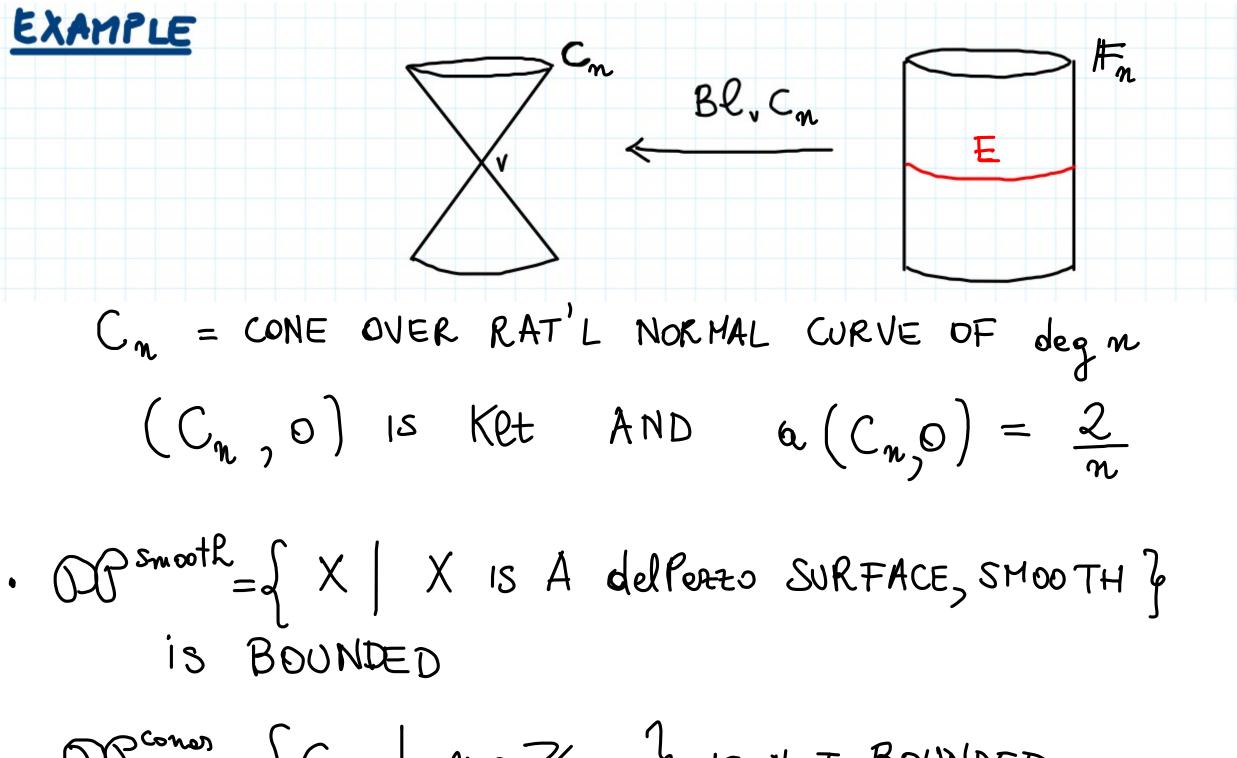
$$\begin{array}{l} \overbrace{K_{0}(LAR)}^{\text{EXAMPLE}} & (X,0) \ LC \\ \left[K_{0}(LAR) \right] : \ IF \ X \ IS \ LC \ AND \ K_{X} \ IS \ CARTIER + AMPLE \implies \\ \hline \exists \ m = m(dun \ X) \ S.T. \ |mK_{X}| \ is \ NERY \ AMPLE \ . \end{array}$$

$$y_{nd} = g X | X is LC , Kx is Cartiar +A unple $K_x^{din} X = v y$$$









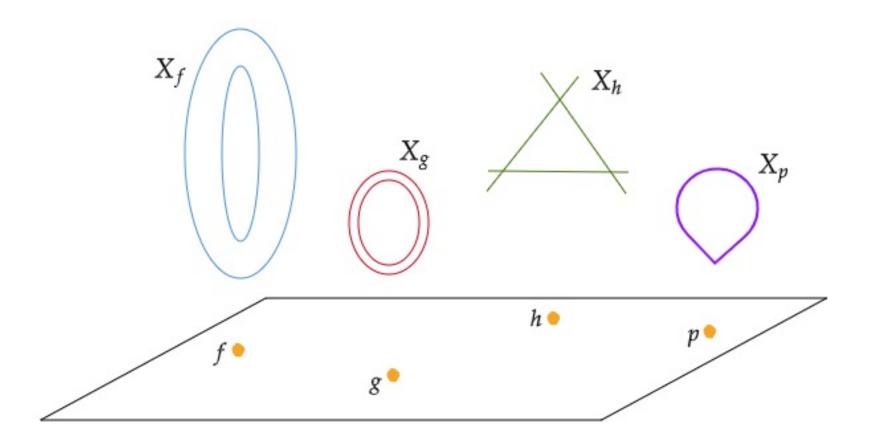
 $OO^{conos} = \mathcal{O}C_m | m \in \mathbb{Z}_{>0}$ is not BOUNDED

EXAMPLE

$$C_n = CONE OVER RAT'L NORMAL CURVE OF deg n
(C_n , o) is Ket AND $a(C_n, o) = \frac{2}{n}$
 $OP^{smootR} = d X | X is A delfered SURFACE, SMOoth }
is BOUNDED
 $OD^{conven} = d C_n | n \le d$ } is BOUNDED FOR FIXED deZ_{so}
(since it is A finite set)$$$

WHY IS BOUNDEDNESS AN INTERESTING PROPERTY? IF A COLLECTION O OF VARIETIES IS BOUNDED THEN WE CAN CONCLUDE THAT MANY INVARIANTS OF VAR'S & O CAN ONLY ATTAIN FINITELY MANY VALUES.

THEOREM [VERDIER] LET h: X -> T BE A PROPER MORPHISM OF FINITE TYPE VARIETIES. JUCT ZARISKI OPEN (#\$) SUCH X (UN THE EUCLIDEAN) is A TOPOLOGICALLY TRIVIAL FIBRATIONI (IN THE EUCLIDEAN) TOP.



WHY IS BOUNDEDNESS AN INTERESTING PROPERTY? IF A COLLECTION O OF VARIETIES IS BOUNDED THEN WE CAN CONCLUDE THAT MANY INVARIANTS OF VAR'S & O CAN ONLY ATTAIN FINITELY MANY VALUES.

THEOREM [VERDIER] LET $h: \mathcal{X} \longrightarrow T$ BE A PROPER MORPHISM OF FINITE TYPE VARIETIES. $\exists U \subseteq T$ ZARISKI OPEN $(\neq \phi)$ SUCH $\mathcal{H}_{0} \xrightarrow{h_{0}} U$ is A TOPOLOGICALLY TRIVIAL FIBRATIONI (IN THE EUCLIDEAN) TOP. **COROLLARY** LET O BE A BOUNDED COLLECTION OF STROTH PROJECTIVE VAR'S. THEN $\forall p,q \ge 0$ $\exists M_{p,q} = M_{p,q}(O) \ge 0$ S.E. $h^{l,q}(x) \le M_{p,q}$ $\forall X \in O$. WHY IS BOUNDEDNESS AN INTERESTING PROPERTY? RECALL THAT WE SAID YESTERDAY THAT 1 OF THE GOALS OF THE CLASSIFICATION OF ALG. VAR'S IS TO BUILD MODULI SPACES FOR

> LOG CANONICAL MODELS K-TRIVIAL PAIRS LOG FAND PAIRS

3 STEP (NON-SENSE) RECIPE FOR A PROPER MODULI SPACE OF FINITE TYPE

- Need to check that we are not trying to parametrize too many varieties! Key word: Boundedness
- Need to choose what kind of degenerations will be admitted for varieties in D. Key word: Functor
- Need to choose a way to construct the moduli space.
 Key word: Quotient
 Many available techniques: GIT, VGIT, KSBA, BB,

WHY IS BOUNDEDNESS AN INTERESTING PROPERTY? RECALL THAT WE SAID YESTERDAY THAT 1 OF THE GOALS OF THE CLASSIFICATION OF ALG. VAR'S IS TO BUILD MODULI SPACES FOR

> LOG CANONICAL MODELS K-TRIVIAL PAIRS LOG FANO PAIRS

THE EXAMPLES WE SAW EARLIER TELL US (UNSURPRISINGLY) THAT WE WILL NEED TO FIX SOME INVARIANTS IF WE WANT TO HAVE ANY HOPE OF PROVING BOUNDEDNESS.